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Unzipping double-stranded DNA with a force: Numerical results

Jeff Z. Y. Chen
Department of Physics, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1

~Received 4 October 2001; published 25 September 2002!

A double-stranded DNA molecule pulled with a force acting on the strand terminals exhibits a partially
denatured structure or can be completely unzipped when the pulling force goes beyond a critical force. It has
been suggested that accompanying the unzipping transition, various power-law properties exist. Through the
numerical solution to a model that contains heterogeneous bonding interactions between bases on the two
strands, we evaluated the critical forces and the extension-force curves for various degree of sequence disor-
derliness, and compared the numerical results with predictions from analytical approaches.

DOI: 10.1103/PhysRevE.66.031912 PACS number~s!: 87.15.2v, 87.10.1e, 64.70.2p
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I. INTRODUCTION

Schematically shown in Fig. 1 is a double-stranded DN
each strand containing a disordered sequence of bases
are paired with their counterparts on the other strand.
paired segments contain mostly complementaryA-T andG-C
pairings. Recent experimental achievements have mad
possible to probe the structure of a double-stranded D
~dsDNA! molecule, typically by applying an external forc
acting on the terminal bases@1,2#. In recent theoretical stud
ies, it has been suggested that an unzipping critical fo
exists beyond which the entire dsDNA molecule can be
zipped. Earlier work by Vedenov, Dykhne, and Fran
Kemenetskii concentrated on the theoretical developmen
the coil-helix transition occurring at the melting transitio
based on a Ising-model-like treatment@3#. Much recent dis-
cussion concerns a simple model in which two strands
modeled by two polymer chains, whose pairing potenti
between the different bases have been modeled by a ho
geneous short-ranged potential of various types@4–11#. Most
work is based on the continuous description of a polym
chain and its mapping to a quantum-mechanical probl
The thermal melting and forced unzipping transition can
represented in a phase diagram with the temperature and
ternal force as parameters, and such a phase diagram
been generated both from continuous and lattice descript
@10,11#. The heterogeneous nature of the base sequence
been ignored in these studies until recently, when studie
the melting and unzipping transition that contain differe
pairing potentials have been reported@12,13#.

In this paper, we report our numerical solution to t
Hamiltonian model~Sec. II! that was proposed by Lubensk
and Nelson@13#, which contains an explicit simulation of th
sequence dependence of the bases. Each generated seq
of dsDNA model is then examined through the numeri
solution of a ‘‘time’’ dependent Schro¨dinger equation, by uti-
lizing the Crank-Nicholson method~Sec. III!. We mainly
concentrated on discussing the unzipped extension as a
tion of the external force and the unzipping phase diagr
produced from the numerical simulations~Secs. IV–VI!.

II. BASIC MODEL

The basic assumption is to approximate the configura
of each of the two strands in the dsDNA by a Wiener m
1063-651X/2002/66~3!/031912~7!/$20.00 66 0319
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surement. The spatial position of thesth base, labeled con
tinuously froms50 at one end tos5N at the other, is de-
noted asr i(s), where i (51,2) represents the two strand
Each base unit on thei 51 chain interacts with a counterpa
unit on the i 52 chain. The probability functional for the
configuration of the system is then assumed to have the f

P@r1~s!,r2~s!,$s%#}expH 2
D

2b2 E
0

NF S dr1

ds D 2

1S dr2

ds D 2Gds

2bE
0

N

V@r1~s!2r2~s!,s#dsJ , ~1!

where b is the basic Kuhn length. The pairing interactio
represented by the short-rangedV(r ,s) that explicitly de-
pends on a distribution of the sequence$s%, should have a
force range approximately the same as or smaller thanb, and
is generally assumed to be different for different base p
involved. Upon the introduction of two new variablesr6

5r16r2 and the reduction of the probability function t
eliminate ther1 variable, one arrives at an effective pro
ability function @13#

P0@r2~s!,$s%#}expH 2
D

2a2 E
0

NF S dr2

ds D 2Gds

2bE
0

N

V@r2~s!,s#dsJ , ~2!

FIG. 1. Schematic representation of the dsDNA model cons
ered. Each pair interacts withz(s)e, wherez(s) is a random num-
ber, and the sequence is assumed to be heterogeneously disor
©2002 The American Physical Society12-1
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JEFF Z. Y. CHEN PHYSICAL REVIEW E66, 031912 ~2002!
which contains the relative position vectorr2 only, where
2a25b2. The complete probability function with an unzip
ping force acting on theNth base pairs is then

Punzip@r2~s!,$s%#5P0@r2~s!,$s%#exp$bF•r2~N!%. ~3!

The main task is to solve the partition function problem
this probability for possible sequences of the pairing dis
bution, and find system-specific and universal behavior.

It is our interest here to treat the problem numerically. F
numerical convenience we further approximate the origi
probability in a one-dimensional version,

P0@z~s!,$s%#}expH 2
1

2a2 E
0

NF S dz

dsD
2Gds

2bE
0

N

V@z~s!,s#dsJ . ~4!

Hence the unzipping probability function can be written a

Punzip@z~s!,$s%#5P0@z~s!,$s%#exp$bF•z~N!% ~5!

with the assumption that the pulling force is directed alo
the z direction only. One of the most interesting problem
statistical physics is to examine the stability of dsDNA bin
ing using aD-dimensional probability function@Eq. ~2!#. A
denaturing~or melting! transition might occur without an
unzipping force at a high temperature, which invariably lea
to the questioning of the very role that dimensionality pla
in such a transition@14#. No conclusive evidence has bee
provided for determining the upper dimensionality of t
heterogeneous model. Cule and Hwa@12# have studied the
melting transition of a heterogeneous DNA model near
melting transition. They have concluded that the variation
the pairing potentials has a weak effect on the melting
havior of a heterogeneous DNA model.

In principle, to rigorously model real dsDNA systems, w
should examine the above probability function in three
mensions. Our main focus here, however, is the unzipp
transition under a strong external force at a temperature,
nificantly away from the melting transition region. Here, w
have used the term ‘‘melting transition’’ strictly for the de
naturing transition occurring while the temperature var
with no external or a small external unzipping force. Sin
the governing phenomenon in the strong force region is
dimensional along the direction of the force, examining
one-dimensional version of the original probability functio
is justified.

The mathematical form of the probability function in E
~4! can be related to many other physical phenomena.
closest one is in the study of random copolymer localizat
under an external field, specifically, at a sharp interface@15#.
In the current situation, further simplification can be made
we are only interested in the probability distribution of t
Nth terminals, not the conformation of the entire chain th
would depend on all spatial coordinates of every base p
The calculation of such a probability functionc0(z,N,$s%),
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as a function of the separation distancez, of a DNA model
containing a total ofN base pairs can be initially made un
related to any force field. The additional factor of the unz
ping effects can be included by considering the exponen
factor in Eq.~5!.

Going through an analysis of the analogy between
probability function in Eq.~4! and the path integral approac
in quantum physics, one can show thatc0(z,N,$s%) in a
pairing field V obeys a time dependent Schro¨dinger-like
equation,

2
]c0~z,N,$s%!

]N
5F2

a2

2

d2

dz2 1bV~z,N!Gc0~z,N,$s%!,

~6!

where the wave functionc is subject to the initial condition
c0(z,0,$s%)51. The same equation was recently examin
by various authors in the context of dsDNA unzipping, wh
V(z,N) has no sequence dependence@7,9,11#. Zhou also
considered the case where the potential is not symmetric
centered atz50 @16#. In our case, since the pairing potenti
depends on a specific sequence in a dsDNA mo
c0(z,N,$s%) has an explicit sequence dependence.

It thus becomes clear that an effective numeric appro
to study the problem is to generate a number of DNA mod
by specifying statistically independent disordered sequen
through a numerical solution of the Schro¨dinger equation for
each of these models, we can collect statistics both in
conformational ensemble and in the disorder sequence
semble.

III. NUMERIC PROCEDURE

As we mentioned earlier, the pairing potential is a fun
tion of the path coordinates. Spatially, the potential is shor
ranged, and has been modeled in other studies by a2d(z)
function @7,9# or a square-well function@10#. Here, in order
to implement a numerical scheme based on the fin
difference scheme, we write

V~z,s!5z~s!ew~z!, ~7!

and use a Gaussian potential wellw(z)52exp@2(z/a)2#/
Ap. This particular choice of a smooth function will influ
ence the statistics in a small spatial region of sizea nearz
50, but will not cause any serious harm to the large-sc
properties in a strong external force that we are targete
observe. The overall magnitude of the pairing potential
given by e ~assumed positive! and the information on the
sequence dependence is contained in the dimensionles
efficient z(s).

In this paper, we wish to observe the evolution of diffe
ent physical properties as the sequence varies from the c
pletely random state to the homogeneous state whosez(s)
has no sequence dependence. In particular, we parame
z(s) in the form

z~s!5@a14~12a!r ~s!#/@a14~12a!#, ~8!
2-2
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UNZIPPING DOUBLE-STRANDED DNA WITH A . . . PHYSICAL REVIEW E66, 031912 ~2002!
wherer (s) is a random number ranging from21 to 1. The
relative randomness in the system is controlled by the par
etera, such thata50 corresponds to the complete rando
ness anda51 corresponds to a homopolymer.

It is unknown for real systems to what extent the inter
tion and the sequence is truly random. Even for the cas
a50 where no apparent net pairing force exists, it can
shown that bonding may still occur. Without knowing e
actly what value ofa we should use in practice, we wi
discuss the simulation results that span the entire rang
a5@0,1#. At this point, we wish to stress that using a ra
dom number forz(s) is only a theoretical abstraction of th
real interaction sequences in these systems. The curren
merical procedure can be used unaltered if a more real
sequence can be used in lieu ofz(s) in Eq. ~8!. Some infor-
mation on the free energy cost ofA-T andG-C pairings, for
example, can be found in literature@1,17#.

To implement the numerical procedure in practice,
have to confine ourselves to a finite regionz/a5(2L,L),
which was divided into 2L evenly spaced parts. A time ste
of DN51 and a spatial step ofDz/a51 was used in the
discrete scheme. The numerical procedure used to invert
~6! follows a standard Crank-Nicholson algorithm, as is f
ther described in@18#. The fact that we are dealing with
tridiagonal matrix to approximate the operator on the rig
hand side of this equation further reduces the computa
load. To effectively collect information on the sequenc
dependent features of the problem, in total 103 statistically
independent sequences have been generated for each
a. The numerical scheme used here, when written in a
crete form, is principally similar to the transfer matrix calc
lation in @12#.

Considering the sequence-independent exponential fa
in Eq. ~5!, we see that the calculation of unzipping probab
ity can be separated into the calculation of the unpertur
probability c0(z,N,$s%), and then, by multiplying the force
dependent factor, performing the final analysis in vario
values ofF. Hence our main task is to collect the statistics
the unperturbedc0(z,N,$s%).

The numerical procedure and thus the probability funct
resulting from it depends onL, the dimension of the system
considered in the numerical simulation, andN, the total num-
ber of pairs in the model. It is important to minimize th
finite-size effects due to the limited value ofL andN chosen
in the actual calculation. Some of theL- and N-dependent
effects will be discussed in Sec. VI.

IV. PHASE DIAGRAM AND THE UNZIPPING TRANSITION

In the preceding section we have discussed that the c
acteristics of the statistical properties of the models can
represented by the probability function of theNth terminal,
c0(z,F,$s%). In this section we calculate the free energy p
base pair for theF50 case and relate the calculation to
critical unzipping force in a phase diagram.

To begin with, we discuss the conformational propert
of the system under no external force with the system s
L51600 andN532 000. This set of parameters has t
minimal finite-size effect among other systems that ha
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been examined, as will be shown later and is used in
section, unless otherwise explained. Knowing the probab
function c0(z,N,$s%) for each generated sequence, we c
calculate the free energy per monomer,f 0($s%), based on

b f 0~$s%!52
1

N
ln E

2L

L

c0~z,N,$s%!dz. ~9!

The sequence-averaged reduced free energy per particb
^ f 0&, is then calculated from the 103 samples that we have
generated.

Figure 2~a! shows b^ f 0& as a function ofbe for a
50.0,0.1,0.2,...,1.0, obtained from our numerical simu
tions. The open symbols correspond to the calculation re
based onL51600,N532 000 and the filled symbols corre
spond to a same calculation based onL5800, N516 000.
The relative displacement of the symbols indicates the m
nitude of the numerical error associated with the data.

Earlier, Lubensky and Nelson have determined that
critical pulling force needed to unzip the entire dsDNA is

FIG. 2. Free energy per base pair as a function of the inve
temperature~a! and the critical force as a function of the temper
ture ~b!. The reduced free energy per base pair,2b^ f 0&, is deduced
from the partition function of the considered systems. In plot~a!
open symbols correspond to the system sizeL51600,N536 000
and filled symbols toL5800, N516 000. The difference betwee
the symbols indicates of errors. In plot~b! the free energy in~a! has
been used, together with the formula for the critical force (D51) in
Eq. ~10!, to produce the critical lines. The squares in plot~b! rep-
resent the points near which the scaling behavior was studied in
work.
2-3
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JEFF Z. Y. CHEN PHYSICAL REVIEW E66, 031912 ~2002!
Fca5A2Du^ f 0&ukBT. ~10!

Displayed in Fig. 2~b! is a phase diagram that was repr
duced based on the data in Fig. 2~a! with lines connected
between the data points to approximate the critical lin
Curves with (a.0.7) show a different sign of slope from
those of smallera. Marenduzzo and co-workers recently di
cussed a possible denaturing transition when the tempera
is lowered while fixing the unzipping forces in a homopol
mer model@10,11#. The critical line for thea51 case in Fig.
2~b! resembles the critical line produced in their pap
where they have used a square-well potential, rather than
Gaussian potential used here. This unusual behavior is
artifact of the Gaussian attractive well used in the curr
calculation. We can show by adding a ‘‘hard wall’’ potenti
at z50 that all the curves display the same slope as
lower a’s. As the critical lines in Fig. 2~b! continuously ap-
proachFc50, we expect a finite melting temperature to o
cur. The determination of the melting temperature, howe
involves much more physical consideration than the curr
simple polymer model. Due to the repositioning of each b
pair to achieve a double helix alignment, one needs to c
sider not only the bonding energy gain but also the entro
loss associated with the coil-helix transition@3#. Neverthe-
less, the role that heterogeneity plays near the melting t
sition in a simple polymer model treatment has been
dressed recently in@12#.

In this paper, we concentrate on the unzipping transit
at a temperature much lower than the melting transition. T
squares in Fig. 2~b! specify the location where an analysis
the unzipping behavior was conducted@be5a14(12a)#.
An accurate estimate of the free energy per monomer h
direct consequence on further analysis of the universal p
erties of the unzipping transition. Listed as the second c
umn in Table I is the averaged free energy with the num
in the parentheses showing the digits whereb^ f 0& differs in
comparing the calculated results of the next largest sys
considered (L5800,N516 000). The third column in Table
contains the standard deviation of the free energy base
the consideration of the 103 sample sequences. The four
column in Table I containsFc based on Eq.~10! and column
2, which will be tested below for consistency in a scali
analysis near the unzipping transition.

V. SCALING NEAR THE UNZIPPING TRANSITION

Following Eq. ~5!, we concluded thatcF(z,N,$s%), the
probability function for theNth terminal associated with th
presence of an unzipping forceF, is obtained from that of a
free dsDNA model,c0(z,N,$s%), by an additional factor
exp(bFz):

cF@z,N,$s%#5c0@z,N,$s%#exp$bFz%. ~11!

We next consider the conformational properties when an
ternal forceF is applied to theNth terminal. In particular, we
have chosen the inverse temperaturebe5a14(12a) for
different values ofa in the scaling study.

Figure 3~a! shows an example of the averaged and n
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malized probabilitycF(z,N,$s%) as a function ofz at three
different values of the external force,bFa50, 0.32, and
0.36 whena50 ~complete random sequence!. The terminal
end can be seen as being highly localized in the vicin
around an average. The fact that a loop segment in the
DNA prefers to be separated when the unzipping proc
reaches it makes the terminal density centralize at a fi
distance. In sharp contrast, the probability function for t
homopolymer case (a51) shows a more extended, exp
nential decaying profile@see Fig. 3~b!#. As a matter of fact,
one can explicitly show that the largez behavior for a2d(z)
potential well is indeed an exponential function.

In previous theoretical approaches, the number of
zipped base pairs,̂m&, has been considered in terms of
scaling relationship withFc2F. In order to calculatêm&
directly, we have to handle the added requirement of stor

FIG. 3. Probability function of the pulled terminals as a functi
of the separation distance fora50 ~a! and a51 ~b!. The long
dashed lines nearz50 represent the density profile atF50. The
solid and dotted curves correspond to a finite value ofbFa.

TABLE I. Statistical properties of the bounded dsDNA mod
The second column corresponds to the scaled free energy per
pair, b^ f 0&, for various values of disorderliness represented bya.
The number in the parentheses of the second column represen
estimated error due to finite system size, and^d f 0& in the third
column represents the standard deviation based on 1000 sam
sequence samples. The fourth column is the critical force neede
completely unzip a long dsDNA, as calculated according to Eq.~10!
based on the values given in the first column. The fifth, sixth, a
seventh columns contain the effective exponentq1 , q2 , and q3 ,
respectively, as defined in Eqs.~13!, ~14!, and~15!.

a b^ f 0& b^d f 0& bFca q1 q2 q3

0.0 20.0694~2! 0.000 11 0.3724 1.94 3.99 2.94
0.1 20.0696~3! 0.000 07 0.3732 1.84 3.83 2.84
0.2 20.0722~3! 0.000 06 0.3701 1.82 3.78 2.77
0.3 20.0778~3! 0.000 03 0.3946 1.78 3.65 2.86
0.4 20.0864~2! 0 0.4159 1.69 3.50 2.83
0.5 20.0986~1! 0 0.4442 1.67 3.46 2.71
0.6 20.1145~4! 0 0.4789 1.51 3.07 2.55
0.7 20.1344~2! 0 0.5186 1.39 2.72 2.41
0.8 20.1578~2! 0 0.5620 1.27 2.39 2.28
0.9 20.1848~1! 0 0.6083 1.20 2.18 2.14
1.0 20.2148~1! 0 0.6555 1.16 2.10 2.10
2-4
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UNZIPPING DOUBLE-STRANDED DNA WITH A . . . PHYSICAL REVIEW E66, 031912 ~2002!
the partition functions of all base pair segments underex-
plicit external forceF, for s51,2,...,N. While such a calcu-
lation of ^m& is not impossible from a numerical approa
similar to the current one, the evaluation of the average
tance of theNth terminals is much easier. It is straightfo
ward to consider

Ā~z,$s%!5

E
2L

L

A~z!c0~z,N,$s%!exp~bFz!dz

E
L

L

c0~z,N,$s%!exp~bFz!dz

~12!

for any function of the terminal separationz.
To demonstrate the sequence dependence of the se

tion distancez̄ as a function of the external forceF, we have
plotted ten different cases in Fig. 4 fora50. Due to the
difference in the pairing sequence, some DNA models can
partially denatured with a smaller force, whereas others
quire a much larger force. The steplike functions are a s
nature of the disorderliness in the sequence, as have
observed many times experimentally. All curves flatten
near the system size,z/a5L51600.

While individual dsDNA shows its own characteristic
the system averaged quantity over the sequence ense
demonstratesuniversal conformational properties, as ha
been recently pointed out@13#. In particular,̂ z̄& can be writ-
ten in terms of a scaling relationship with respect to the fo
differenceFc2F nearFc :

^z̄&/a}~Fc2F !2q1. ~13!

The top curve in Fig. 5~a! representŝz̄&/a for a50 as a
function ofb(Fc2F)a in a double logarithmic scale. We se
that within the region of@0.03, 0.02#, ^ z̄& indeed follows a
power behavior, with a fitted exponent ofq151.94, which is
in good agreement with the theoretical prediction ofq152
@13#. Exception of the scaling can be seen in the sma
Fc2F region where the saturation of^ z̄& to a finite value
occurs. As a direct consequence of thecompoundfinite-size
effect shown for various sequences in Fig. 4, the avera
^z̄& has a smaller scaling region in a finite system. Furt

FIG. 4. Typical unzipping force versus extension curves for
different random sequences (a50). The thick curve represents a
average over 103 independently generated samples.
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evidence that the flattened part is a manifestation of
finite-size effect is provided in the following section.

As a comparison,z̄ for the homopolymer case (a51) is
also plotted in the same figure~the bottom curve!. Consider-
ing an inversed function pairing potential that produces a
exponential profile, one can show analytically thatq151.
The fitted scaling exponent from our numerical results,q1
51.16, is comparable to the theoretical prediction.

The curves between these two extreme cases in Fi
correspond toa50.1,0.2,...,0.9 from top to bottom. Mode
with smallera display an interesting crossover phenomen
near the transition point the curves tend to approach
asymptoticq152 behavior, and in the intermediate regio
the curves tend to follow an asymptoticq151 behavior. The
upward bending trend of some of the curves, in particu

n

FIG. 5. Scaling behavior of the unzipped extension,^z̄& ~a!, and
also dz1

2 ~b! and dz2
2 ~b!, as a function of the force differenceFc

2F. Curves from the top to bottom correspond toa
50.0,0.1,0.2,...,1.0. A system size ofL51600,N532 000 has been
used to produce these curves. For comparison, see Eqs.~13!–~15!.
2-5
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JEFF Z. Y. CHEN PHYSICAL REVIEW E66, 031912 ~2002!
the a50.3 case, indicates that a crossover point exists
tween the two power laws. Strictly speaking, a sensi
analysis of the data for thesea’s should be done by explicitly
considering the crossover behavior, which will demonstr
the important aspect of the size of a ‘‘critical region’’ ne
Fc . Since our inadequate data does not allow a substa
analysis of the crossover, we have simply fitted the data
Fig. 5 to a power law. Theeffectivescaling exponentq1
found this way is listed in the fifth column of Table I.

The different shapes of the distribution function in Fig.
can be further characterized by averaged higher moment
particular, Lubensky and Nelson have discussed two o
power laws, which are listed here in terms of averages oz:

d1
2z}^z2̄&2^z̄2&}~Fc2F !2q2, ~14!

d2
2z[^z̄2&2^z̄&2}~Fc2F !2q3. ~15!

These scaling laws can also be examined in a similar w
Figures 5~b! and 5~c! demonstrate how the scaling laws a
obeyed in double logarithmic plots. Again, the effective e
ponentsq2 andq3 are determined, from a least squares line
fit, and are listed in Table I. Clearly, from an inspection
these figures, we conclude that a scaling relationship is w
followed. The values ofq253.99 andq352.94 compare fa-
vorably with the theoretical prediction ofq254 andq353
for a50. The value ofq25q352.10 also agrees with th
expected exponent ofq252.

VI. FINITE-SIZE EFFECTS

In any numerical analysis one has to treat the finite-s
effects carefully. Indeed, there are two factors that need to
considered here. The finite length of model DNA,N, and the
finite dimension of the system simulated in the numeri
treatment,L.

Taking thea50 case, for example, we have consider
various pairs of the parametersN, L in our simulation. For
adequately long model DNA~large N!, the maximum sepa
ration distance between the two pulled terminals is limi
by the system dimensionL. Taking into account the addi
tional consideration that various sequences can be inde
dently pulled at various distances, the useful information
the averaged quantity, when all the sequences are consid
is limited to a fraction ofL.

Figure 6 displayŝ z̄& for various values ofN, L. We have
chosen the particular value ofN for eachL in such a way that
doubling N would display no major difference in thes
curves. The approaching of the scaling behavior of largL
systems can be observed in this figure. The most impor
feature of this series of plots is the indication that t
asymptotic power-law behavior is valid only for very largeL
system, in which the terminal separation has a signific
distance such that the corresponding critical region can
reached. The figure clearly demonstrates the need for st
ing sufficiently large-L systems in order to find the antic
pated scaling behavior.

The demand for largeL in a numerical calculation, how
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ever, is restricted by the actual limitation of the precision
a real number. Although most of the calculations in this wo
were performed in double precision, the subtle balance of
c0 function and the exponential factor in Eq.~11! relies on
handling extremely large and small real numbers. We
show that the current system size,L51600, is actually very
close to the computational limitation, even with a number
numerical tricks that have been implemented to reduce
severe situations.

The demand for largeL in a numerical calculation would
also require a longer polymer chain to be simulated. We
dealing with the thermodynamic limit of the unzipping tra
sition where bothN and L goes to infinity. So long asN is
finite, the system always displays a completely unzipp
state asL approaches̀ , since the energy atz5` is lower
than any paired or partially paired states. The current mo
and indeed our simulations, pertains to another limit, nam
infinitely long DNA’s (N5`) in a large but finite system
~finite L!. Hence, asL goes up, we need to simulate a mu
longer dsDNA to avoid a shorter dsDNA being easily pull
apart and starting to accumulate near the boundary of
simulated system atz5L.

VII. CONCLUDING REMARKS

In this work, we have carried out a numerical study o
dsDNA unzipping model that contains heterogeneous

FIG. 6. The finite-size effects on the separation distance of
terminals. Squares, diamonds, up triangles, and left triangles re
sent system sizes (L51600,N532 000), (L5800,N516 000), (L
5400,N58000), and (L5200,N54000), respectively. In order to
observe the scaling behavior, a largeL is required. The two cases
a50 anda51, are displayed separately in~a! and ~b!.
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quences of pairing potential energy. We have examined
unzipping critical force as a function of the temperature a
also the scaling behavior near the unzipping transition.
have treated the problem carefully by examining various s
tem sizes to minimize the finite-size effects, which have b
shown to play an important role near the transition for
Spanning over the entire range of disorderliness, we h
e

D

ii,

03191
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.

ve

demonstrated the differences and the similarities betwee
homopolymer and heteropolymer model for dsDNA.
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