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Unzipping double-stranded DNA with a force: Numerical results
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A double-stranded DNA molecule pulled with a force acting on the strand terminals exhibits a partially
denatured structure or can be completely unzipped when the pulling force goes beyond a critical force. It has
been suggested that accompanying the unzipping transition, various power-law properties exist. Through the
numerical solution to a model that contains heterogeneous bonding interactions between bases on the two
strands, we evaluated the critical forces and the extension-force curves for various degree of sequence disor-
derliness, and compared the numerical results with predictions from analytical approaches.
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. INTRODUCTION surement. The spatial position of tisth base, labeled con-
tinuously froms=0 at one end t&=N at the other, is de-
Schematically shown in Fig. 1 is a double-stranded DNA,noted asr;(s), wherei (=1,2) represents the two strands.
each strand containing a disordered sequence of bases tha{ch base unit on thie=1 chain interacts with a counterpart
are paired with their cpunterparts on the other strand. Thgnit on thei=2 chain. The probability functional for the
pa!r_ed segments contain mosly complementhfyandG-C configuration of the system is then assumed to have the form
pairings. Recent experimental achievements have made it
possible to probe the structure of a double-stranded DNA O dr? (dr2
(dsDNA) molecule, typically by applying an external force i I
acting on the terminal bass,2]. In recent theoretical stud- P[rl(s),rz(s),{s}]ocex;{ N WJ; (E) +(E)
ies, it has been suggested that an unzipping critical force
exists beyond which the entire dsDNA molecule can be un- N
zipped. Earlier work by Vedenov, Dykhne, and Frank- _IBJO VIry(s)—ry(s),sldsy, (1)
Kemenetskii concentrated on the theoretical development of
the coil-helix transition occurring at the melting transition ) ) o )
based on a Ising-model-like treatmdBi. Much recent dis- Whereb is the basic Kuhn length. The pairing interaction,
cussion concerns a simple model in which two strands aréepresented by the short-rang¥dr,s) that explicitly de-
modeled by two polymer chains, whose pairing potential?ends on a distribution of the sequer{sp should have a
between the different bases have been modeled by a homfrce range approximately the same as or smaller yamd
geneous short-ranged potential of various tyjdesl]. Most  is generally assumed to be different for different base pairs
work is based on the continuous description of a polymeinvolved. Upon the introduction of two new variables
chain and its mapping to a quantum-mechanical problem=ri1*r, and the reduction of the probability function to
The thermal melting and forced unzipping transition can beeliminate ther, variable, one arrives at an effective prob-
represented in a phase diagram with the temperature and exbility function[13]
ternal force as parameters, and such a phase diagram has
been generated both from continuous and lattice descriptions D (N[/dr_\2
[10,11. The heterogeneous nature of the base sequences has Po[r(s),{s}]ocexp{ - Ff (d—)
been ignored in these studies until recently, when studies of aJo S
the melting and unzipping transition that contain different N
pairing potentials have been reporfd®,13. —ﬁf V[r(s),s]ds], 2

In this paper, we report our numerical solution to the 0
Hamiltonian mode[Sec. I) that was proposed by Lubensky
and Nelsori13], which contains an explicit simulation of the F
sequence dependence of the bases. Each generated sequence
of dsDNA model is then examined through the numerical
solution of a “time” dependent Schdinger equation, by uti-
lizing the Crank-Nicholson metho@Sec. II). We mainly 74
concentrated on discussing the unzipped extension as a func-
tion of the external force and the unzipping phase diagram,
produced from the numerical simulatiofSecs. IV-V). E

Il. BASIC MODEL
FIG. 1. Schematic representation of the dsDNA model consid-

The basic assumption is to approximate the configuratiorred. Each pair interacts witf(s) e, where/(s) is a random num-
of each of the two strands in the dsDNA by a Wiener mea-ber, and the sequence is assumed to be heterogeneously disordered.
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Hence the unzipping probability function can be written as

IIl. NUMERIC PROCEDURE

which contains the relative position vector only, where as a function of the separation distarmeof a DNA model
2a’=b?. The complete probability function with an unzip- containing a total oN base pairs can be initially made un-
ping force acting on th&lth base pairs is then related to any force field. The additional factor of the unzip-
ping effects can be included by considering the exponential
, _ ) factor in Eq.(5).

Punzid () {SH=Pol-(s).{sHexp fF-1-(N)}. (3) Going through an analysis of the analogy between the
The main task is to solve the partition function problem of Probability function in Eq(4) and the path integral approach
this probability for possible sequences of the pairing distri-n quantum physics, one can show thaj(z,N.{s}) in a
bution, and find system-specific and universal behavior. ~ Pairing field V obeys a time dependent Sctioger-like

It is our interest here to treat the problem numerically. Foréguation,
numerical convenience we further approximate the original
probability in a one-dimensional version, do(z,N,{s}) a2 d?
- JN I 2d22+ﬁV(Z,N) lﬂo(Z,N,{S}),
(dz)2 (6)
ds where the wave functiog is subject to the initial condition
N ¥o(z,0{s})=1. The same equation was recently examined
—,Bf V[z(s),s]ds] : (4) by various authors in the context of dsSDNA unzipping, when
0 V(z,N) has no sequence dependen@ed,11. Zhou also
considered the case where the potential is not symmetrically
centered ar=0 [16]. In our case, since the pairing potential
depends on a specific sequence in a dsDNA model,
Punzid 2(8){s}]1=Polz(s),{s}1exp{BF-z(N)}  (5)  y,(z,N,{s}) has an explicit sequence dependence.

. ] . o It thus becomes clear that an effective numeric approach
with the assumption that the pulling force is directed alongg study the problem is to generate a number of DNA models
the z direction only. One of the most interesting problem in by specifying statistically independent disordered sequences;
statistical physics is to examine the stability of dsDNA bind-through a numerical solution of the Schifoger equation for
ing using ab-dimensional probability functiofiEq. (2)]. A each of these models, we can collect statistics both in the
denaturing(or melting transition might occur without an  ¢onformational ensemble and in the disorder sequence en-
unzipping force at a high temperature, which invariably leads;emple.
to the questioning of the very role that dimensionality plays
in such a transitio14]. No conclusive evidence has been
provided for determining the upper dimensionality of the
heterogeneous model. Cule and H{i2] have studied the As we mentioned earlier, the pairing potential is a func-
melting transition of a heterogeneous DNA model near theion of the path coordinate Spatially, the potential is short
melting transition. They have concluded that the variation ofranged, and has been modeled in other studies bydéz)
the pairing potentials has a weak effect on the melting befunction[7,9] or a square-well functiof10]. Here, in order
havior of a heterogeneous DNA model. to implement a numerical scheme based on the finite-

In principle, to rigorously model real dsDNA systems, we difference scheme, we write
should examine the above probability function in three di-
mensions. Our main focus here, however, is the unzipping _
transition under a strong external force at a temperature, sig- V(z,5)={(s)ew(2), )
nificantly away from the melting transition region. Here, we : . _ _ 2
have used the term “melting transition” strictly for the de- ?/@ uﬁ? a G_au|55|anh p_oten]'flal WW(Z)h—f ex_p: (Z(ﬁl). ]%
naturing transition occurring while the temperature varies ™. This part_lcg ar choice ot-.a S”_‘°°t _unctlon_W| ntiu-
with no external or a small external unzipping force. Since‘ince the S.tat'St'CS in a small spatlal region of sizeearz
the governing phenomenon in the strong force region is one_ 0, bu} W'." hot cause any serious harm to the large-scale
dimensional along the direction of the force, examining apropertles In a strong eXtemal force that we are targe_ted_to
one-dimensional version of the original probability function o_bserve. The overall magr_utude of th_e pairing potential is
is justified. given by e (assumed p(.)snn)ean.d thg mformguon on the

The mathematical form of the probability function in Eq. sequence dependence is contained in the dimensionless co-
(4) can be related to many other physical phenomena. Thgff'c'ent £0s). . . .
closest one is in the study of random copolymer localization In th|s_ paper, We.W'Sh to observe the evqlutlon of differ-
under an external field, specifically, at a sharp interfda. ent physical properties as the sequence varies from the com-
In the current situation, further simplification can be made ifpletely random state to the homogenepus state wiiGse .
we are only interested in the probability distribution of the has no sequence dependence. In particular, we parametrize
Nth terminals, not the conformation of the entire chain thatg(s) in the form
would depend on all spatial coordinates of every base pair.
The calculation of such a probability functiaf(z,N,{s}), {(S)=[at4(1l—a)r(s)])/[a+4(l—a)], (8)
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wherer (s) is a random number ranging from1 to 1. The
relative randomness in the system is controlled by the param-
eter «, such thate=0 corresponds to the complete random-
ness andv=1 corresponds to a homopolymer.

It is unknown for real systems to what extent the interac-
tion and the sequence is truly random. Even for the case of
a=0 where no apparent net pairing force exists, it can be
shown that bonding may still occur. Without knowing ex-
actly what value ofa we should use in practice, we will
discuss the simulation results that span the entire range of
a=[0,1]. At this point, we wish to stress that using a ran-
dom number forZ(s) is only a theoretical abstraction of the
real interaction sequences in these systems. The current nu-
merical procedure can be used unaltered if a more realistic R L rrwwm
sequence can be used in lieu&gk) in Eq. (8). Some infor- = &) o
mation on the free energy cost AfT and G-C pairings, for - _cyoocﬂlmm
example, can be found in literatuf#,17]. B 0 SonIOIIIiD

To implement the numerical procedure in practice, we ”
have to confine ourselves to a finite regiota=(—L,L),
which was divided into 2 evenly spaced parts. A time step
of AN=1 and a spatial step akz/a=1 was used in the
discrete scheme. The numerical procedure used to invert Eq.
(6) follows a standard Crank-Nicholson algorithm, as is fur-
ther described i118]. The fact that we are dealing with a Ll R W Y
tridiagonal matrix to approximate the operator on the right K 1-”2
hand side of this equation further reduces the computation o
load. To effectively collect information on the sequence- FIG 2. F . . .
dependent features of the problem, in tota? Hfatisticall - 2. Free energy per base pair as a function of the inverse
. P P ' y . temperaturga) and the critical force as a function of the tempera-
independent sequences have been generated_for e_ach 9IMER (1), The reduced free energy per base paif(f,), is deduced
a. The num_encal S_Cheme_ u_sed here, when ertter_l Ina dISIL'rom the partition function of the considered systems. In [t
crete form, is principally similar to the transfer matrix calcu- gnen symhols correspond to the system gize1600, N=236 000
lation in [12]. and filled symbols td-=800,N= 16 000. The difference between

Considering the sequence-independent exponential fact@fe symbols indicates of errors. In pid) the free energy ifia) has
in Eq. (5), we see that the calculation of unzipping probabil- peen used, together with the formula for the critical forDe(1) in
ity can be separated into the calculation of the unperturbeéq. (10), to produce the critical lines. The squares in flot rep-
probability (z,N,{s}), and then, by multiplying the force resent the points near which the scaling behavior was studied in this
dependent factor, performing the final analysis in variouswork.
values off. Hence our main task is to collect the statistics of
the unperturbedy(z,N,{s}). been examined, as will be shown later and is used in this

The numerical procedure and thus the probability functiorsection, unless otherwise explained. Knowing the probability
resulting from it depends oh, the dimension of the system function ¢((z,N,{s}) for each generated sequence, we can
considered in the numerical simulation, adgthe total num-  calculate the free energy per monomigy{s}), based on
ber of pairs in the model. It is important to minimize the
finite-size effects due to the limited value lofandN chosen 1 .
in the actual calculation. Some of the and N-dependent Bfo({sh=— _|nf Uo(z,N {shdz )
effects will be discussed in Sec. VI. N -L

—

0
|

0.1

The sequence-averaged reduced free energy per pajicle,
(fo), is then calculated from the 1Gamples that we have

In the preceding section we have discussed that the chagenerated.
acteristics of the statistical properties of the models can be Figure 2a) shows B(f,) as a function ofBe for «
represented by the probability function of thigh terminal, =0.0,0.1,0.2,...,1.0, obtained from our numerical simula-
¥o(z,F,{s}). In this section we calculate the free energy pertions. The open symbols correspond to the calculation result
base pair for th&==0 case and relate the calculation to abased orL=1600,N=32000 and the filled symbols corre-
critical unzipping force in a phase diagram. spond to a same calculation based loi 800, N=16 000.

To begin with, we discuss the conformational propertiesThe relative displacement of the symbols indicates the mag-
of the system under no external force with the system sizaitude of the numerical error associated with the data.
L=1600 andN=32000. This set of parameters has the Earlier, Lubensky and Nelson have determined that the
minimal finite-size effect among other systems that havecritical pulling force needed to unzip the entire dsDNA is

IV. PHASE DIAGRAM AND THE UNZIPPING TRANSITION
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F.a= /2D|<f0>|kBT- (10) TABLE |. Statistical properties of the bounded dsDNA model.
The second column corresponds to the scaled free energy per base

Displayed in Fig. ®) is a phase diagram that was repro- Pair, 5(fo), for various values of disorderliness representechby
duced based on the data in FigaRwith lines connected Thg number in the paren'Fh.eses of the sgcond column repre§ents the
between the data points to approximate the critical lineséStimated error due to finite system size, dwdo) in the third
Curves with @>0.7) show a different sign of slope from column represents the standard dewa_tlon bas_e_d on 1000 sampled
those of smaller. Marenduzzo and co-workers recently dis- sequence samples. The fourth column is the critical fprce needed to
cussed a possible denaturing transition when the temperatu 8mpletely unzip a Iong dSD.NA’ as.ca|CU|ated accord.'ng tqm)'
. e L . ased on the values given in the first column. The fifth, sixth, and
is lowered while fixing the unzipping forces in a homopoly- . )
. . A seventh columns contain the effective expongnt g,, andqs,

mer mode[10,11]. The c_r_mcal _Ime for thea=1_case in Fig. respectively, as defined in Eq4.3), (14), and(15).
2(b) resembles the critical line produced in their paper
where they have used a square-well potential, rather than the,, B(fo) B(5f)  PFea & @b Gs
Gaussian potential used here. This unusual behavior is an
artifact of the Gaussian attractive well used in the current0.0 —0.06942) 0.00011 0.3724 194 399 294
calculation. We can show by adding a “hard wall” potential 0.1 —0.0693) 0.00007 0.3732 1.84 3.83 2384
at z=0 that all the curves display the same slope as the0.2 —0.07223) 0.00006 0.3701 1.82 3.78 2.77
lower «’s. As the critical lines in Fig. @) continuously ap- 0.3 —-0.07783) 0.00003 0.3946 1.78 3.65 2.86
proachF.=0, we expect a finite melting temperature to oc- 0.4 —0.08642) 0 0.4159 169 350 2.83
cur. The determination of the melting temperature, however,0.5 —0.09861) 0.4442 167 346 271
involves much more physical consideration than the currentg g —0.11454) 0.4789 151 3.07 255
simple polymer model. Due to the repositioning of each baseg 7  —0.13442) 05186 1.39 272 241
pair to achieve a double helix alignment, one needs to conpg g 15742) 05620 1.27 2.39 228
sider not only the bonding energy gain but also the entropicg g _g 184g1) 06083 1.20 218 2.14
loss associated with the coil-helix transiti¢8]. Neverthe- ;g ~0.21481) 0.6555 1.16 2.10 2.10
less, the role that heterogeneity plays near the melting tran-
sition in a simple polymer model treatment has been ad-
dressed recently ifl2]. o . malized probabilityy=(z,N,{s}) as a function of at three

In this paper, we concentrate on the unzipping transitionyigarent values of the external forcggFa=0, 0.32, and
at a temperature much _Iower than Fhe melting transition. Th%_% whena=0 (complete random sequer)cé',he ter;ninal
squares in Fig. @) specify the location where an analysis of g4 can e seen as being highly localized in the vicinity

the unzipping behavior was conductgle=a+4(1-a)].  55und an average. The fact that a loop segment in the ds-

An accurate estimate of the free energy per monomer has BNA prefers to be separated when the unzipping process

direct consequence on further analysis of the universal prof,,ches it makes the terminal density centralize at a finite
erties of the unzipping transition. Listed as the second col

i . . distance. In sharp contrast, the probability function for the
umn in Table | is the averaged free energy with the numbe P P y

) . - : ; Flomopolymer casea=1) shows a more extended, expo-
in the parentheses showing the digits whgtéo) differs i \ovia| decaying profilésee Fig. B)]. As a matter of fact,

comparing the calculated results of the next largest systela can explici ;
X . ; plicitly show that the largdehavior for a— 6(z)
considered Il =800N= 16 000). The third column in Table | tential well is indeed an exponential function.

; Y 0
contains the standard deviation of the free energy based cﬁl In previous theoretical approaches, the number of un-
the con_S|derat|on of th_e $sample sequences. The fourth zipped base pairgm), has been considered in terms of a
column in Table | containk based on Eq10) and column  geajing relationship wittF.—F. In order to calculatem)

2, which will be tested below for consistency in a scaling gjrectly, we have to handle the added requirement of storing
analysis near the unzipping transition.

O O OO oo

003 TTTTTTTT 19 F[TTrIrrrrig
V. SCALING NEAR THE UNZIPPING TRANSITION - (A) | E: (B) |
= : = | =
Following Eq. (5), we concluded thatye(z,N,{s}), the = E = 3
probability function for theNth terminal associated with the j‘ﬂzg == =
presence of an unzipping forég is obtained from that of a 2 E 3 E 3
free dsDNA model,yo(z,N,{s}), by an additional factor @ E 1 B 3
exp(BF2): 0.015 3 H =
Yelz,N,{s}]= o[ Z,N,{s}]exp BFz}. (11 Dm::'fl AN RIS Ei IR
o 500 1000 O 500 1000
We next consider the conformational properties when an ex- za
ternal forceF is applied to theNth terminal. In particular, we FIG. 3. Probability function of the pulled terminals as a function
have chosen the inverse temperatfie=a+4(1—a) for  of the separation distance far=0 (a) and @=1 (b). The long
different values ofa in the scaling study. dashed lines near=0 represent the density profile Bt=0. The

Figure 3a) shows an example of the averaged and norsolid and dotted curves correspond to a finite valugBa.
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the partition functions of all base pair segments uneber 107 T T TTTTTH
plicit external forceF, for s=1,2,...N. While such a calcu- la) 3
lation of {m) is not impossible from a numerical approach
similar to the current one, the evaluation of the average dis-
tance of theNth terminals is much easier. It is straightfor-
ward to consider

JL A(2)ho(z,N,{s})exp( BFz)dz
— -L
A(z,{s})= (12 10° N RN L . R

L 2 El a
fL ¥o(z,N,{s})exp BFz)dz 18 B -Fla 10
for any function of the terminal separatian 10° L I N L ] B R R
To demonstrate the sequence dependence of the separa- A o
tion distancez as a function of the external forée we have 1
plotted ten different cases in Fig. 4 far=0. Due to the "o g
difference in the pairing sequence, some DNA models can be )
partially denatured with a smaller force, whereas others re- *ﬁl o
quire a much larger force. The steplike functions are a sig-
nature of the disorderliness in the sequence, as have been 107
observed many times experimentally. All curves flatten out E
near the system size/a=L =1600. 1[%‘0_2 L ! ‘1'0:,

While individual dsDNA shows its own characteristics,
the system averaged quantity over the sequence ensemble
demonstratesuniversal conformational properties, as has 5

. . . 10 T T T TTTIT] T T T TTII0
been recently pointed o{it3]. In particular(z) can be writ- :
ten in terms of a scaling relationship with respect to the force
differenceF.—F nearF.:

10
B{F. -Fla

(Dlax(F—F) %, (13)

The top curve in Fig. &) representgz)/a for «a=0 as a
function of 8(F.—F)a in a double logarithmic scale. We see

that within the region 0f0.03, 0.02, (z) indeed follows a : T e |-| i3

power behavior, with a fitted exponent @f=1.94, which is 10,2 10" 10°

in good agreement with the theoretical predictiongef 2 Pi(F; -Fla

[13]. Exception of the scaling can be seen in the smaller

F.—F region where the saturation ¢£) to a finite value FIG. 5. Scaling behavior of the unzipped extensi@), (a), and

occurs. As a direct consequence of twmpoundinite-size  aiso 572 (b) and 623 (b), as a function of the force differende,
effect shown for various sequences in Fig. 4, the averagedF. Curves from the top to bottom correspond ta
(z) has a smaller scaling region in a finite system. Further=0.0,0.1,0.2,...,1.0. A system sizelof 1600,N=232 000 has been
used to produce these curves. For comparison, see(E)s«(15).
2'a
1.5x10°

T T T T T T rT T T T My
i

evidence that the flattened part is a manifestation of the
finite-size effect is provided in the following section.

As a comparisonz for the homopolymer casex=1) is
also plotted in the same figutéhe bottom curve Consider-
ing an inverses function pairing potential that produces an
exponential profile, one can show analytically tlept=1.

The fitted scaling exponent from our numerical results,
=1.16, is comparable to the theoretical prediction.

The curves between these two extreme cases in Fig. 5
correspond tax=0.1,0.2,...,0.9 from top to bottom. Models
with smaller« display an interesting crossover phenomenon:
near the transition point the curves tend to approach an

FIG. 4. Typical unzipping force versus extension curves for ten@symptoticq; =2 behavior, and in the intermediate region,
different random sequencea€0). The thick curve represents an the curves tend to follow an asymptotig=1 behavior. The
average over T0independently generated samples. upward bending trend of some of the curves, in particular,

1.0 07

5.0x10°

=1 I e s i I

mafTTTTTTTTTTTTTT

oy

0.3
pFa
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the «=0.3 case, indicates that a crossover point exists be- 10t e T
tween the two power laws. Strictly speaking, a sensible ia)
analysis of the data for thesés should be done by explicitly " {L=1600, N=32000)

considering the crossover behavior, which will demonstrate 10 a ",

the important aspect of the size of a “critical region” near 5 2 @ 24

F.. Since our inadequate data does not allow a substantial AioPe 4 a oy

analysis of the crossover, we have simply fitted the data in V [L=200, r~1_4c:-:m]qJ <M

Fig. 5 to a power law. Theeffectivescaling exponenty; X
found this way is listed in the fifth column of Table I. 10 {
The different shapes of the distribution function in Fig. 3
can be further characterized by averaged higher moments. In
particular, Lubensky and Nelson have discussed two other 10

power laws, which are listed here in terms of averages of

I T T T T, - "I

] X
10 1
BE. -Fla

[=]

— 10 T T T ¢ T T I T T 110
825(2%) — (Z)x(F—F) "%, (14 i L
10 (L1600, N=32000)
852=(2%) ~(2)**(F.—F) %, (15 o102k .;] ¥,
M

These scaling laws can also be examined in a similar way. g (L300, N—4000|
Figures %b) and Sc) demonstrate how the scaling laws are 10
obeyed in double logarithmic plots. Again, the effective ex- o
ponentsy, andqs are determined, from a least squares linear 10
fit, and are listed in Table I. Clearly, from an inspection of IR T
these figures, we conclude that a scaling relationship is well 1‘310-:3 o’ 10°

1
followed. The values of|,=3.99 andg;=2.94 compare fa- 9 B(F. -Fla
vorably with the theoretical prediction af,=4 andq;=3
for «=0. The value ofg,=q;=2.10 also agrees with the FIG. 6. The finite-size effects on the separation distance of the
expected exponent af,= 2. terminals. Squares, diamonds, up triangles, and left triangles repre-
sent system sized 1600N=32000), L =800N=16 000), L
=400N=28000), and IL=200N=4000), respectively. In order to
observe the scaling behavior, a laigés required. The two cases,

In any numerical analysis one has to treat the finite-siz&*=0 anda=1, are displayed separately (@ and (b).
effects carefully. Indeed, there are two factors that need to bgygr s restricted by the actual limitation of the precision of
considered here. The finite length of model DNW.and the 5 rea| number. Although most of the calculations in this work
finite dimension of the system simulated in the numericalyere performed in double precision, the subtle balance of the
treatmentL. o function and the exponential factor in Ed.1) relies on

Taking thea=0 case, for example, we have consideredhandling extremely large and small real numbers. We can
various pairs of the parametel§ L in our simulation. For  show that the current system size= 1600, is actually very
adequately long model DNAlarge N), the maximum sepa- close to the computational limitation, even with a number of
ration distance between the two pulled terminals is limitednumerical tricks that have been implemented to reduce the
by the system dimensioh. Taking into account the addi- severe situations.
tional consideration that various sequences can be indepen- The demand for largk in a numerical calculation would
dently pulled at various distances, the useful information foralso require a longer polymer chain to be simulated. We are
the averaged quantity, when all the sequences are considergtgaling with the thermodynamic limit of the unzipping tran-
is limited to a fraction ofL. sition where bothN andL goes to infinity. So long abl is

Figure 6 display<z) for various values oN, L. We have finite, the system always displays a completely unzipped
chosen the particular value Bffor eachL in such away that ~State as. approachese, since the energy at= is lower
doubling N would display no major difference in these than_any paired or part_lally palred_ states. The current model,
curves. The approaching of the scaling behavior of large- and indeed our simulations, pertains to another limit, namely,

systems can be observed in this figure. The most importarjffinitely long DNAs (N=c<) in a large bUI.finilte system i
feature of this series of plots is the indication that the!finite L). Hence, as. goes up, we need to simulate a muc

asymptotic power-law behavior is valid only for very laige 10"g€r dSDNA to avoid a shorter dsDNA being easily pulled
system, in which the terminal separation has a significanfP2't and starting to accumulate near the boundary of the

distance such that the corresponding critical region can bemulated system a=L.

reacheq. The figure clearly demonstrates the need for §tpdy— VII. CONCLUDING REMARKS

ing sufficiently largek systems in order to find the antici-

pated scaling behavior. In this work, we have carried out a numerical study of a
The demand for largé in a numerical calculation, how- dsDNA unzipping model that contains heterogeneous se-

VI. FINITE-SIZE EFFECTS
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guences of pairing potential energy. We have examined thdemonstrated the differences and the similarities between a
unzipping critical force as a function of the temperature anchomopolymer and heteropolymer model for dsDNA.

also the scaling behavior near the unzipping transition. We

have _treated the_pr_oblem qareful!y by examining various sys- ACKNOWLEDGMENT
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